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Abstract
Swimming at low Reynolds number in a fluid confined between two plane walls is studied for
an infinite plane sheet located midway between the walls and distorted with a transverse
propagating wave. It is shown that the flow pattern is closely related to that for peristaltic
pumping. The hydrodynamic interaction between two flexible sheets swimming parallel in
infinite space is related to the problem of peristaltic pumping in a planar channel with two
wavy walls.

1. Introduction

In his path-breaking article on swimming at low Reynolds
number Taylor [1] studied a planar sheet propelling itself in
an infinite fluid by means of a transverse wave-like distortion.
For a propagating wave the surface deformation is not time-
reversible and, as a result, the sheet swims with a non-
vanishing velocity, as may be calculated in perturbation theory
to second order in the wave amplitude. The analysis was
based on the creeping flow equations and inertia was neglected.
Blake [2] has used the sheet model to study the propulsive
effect of bunched cilia on the surface of a microorganism.
Taylor’s work was extended by Reynolds [3], who included
fluid inertia and considered straining of the waving surface.
Tuck [4] corrected Reynolds’ work by including the convective
term in the Navier–Stokes equations.

Reynolds [3] also investigated the influence of one or two
nearby walls on the speed of the swimming sheet in the low
Reynolds number limit. Further details of the motion in narrow
channels were studied by Katz [5]. In section 2 of this paper
we present a comprehensive treatment of the swimming at low
Reynolds number of a sheet in a planar channel using a method
developed in earlier work with Jones [6].

Subsequently we show in section 3 that the same
solution for the first-order flow pattern may be used to
analyze peristaltic pumping in a planar channel. Early work
on peristaltic pumping has been reviewed by Jaffrin and
Shapiro [7]. Pumping in planar geometry was studied by
Burns and Parkes [8], and by Pozrikidis [9] using a boundary
integral method. In a planar channel with two wavy walls

there is interference of the wave patterns generated by the
individual walls, and the pumping rate and dissipation depend
on the phase difference of the two wall distortions. This allows
optimization of the pumping rate.

In section 4 we show that the calculation of peristaltic
pumping with two wavy walls is closely related to Taylor’s
analysis [1] of the hydrodynamic interaction of two swimming
sheets in infinite space. Taylor considered sheets swimming at
the same amplitude and speed, with strokes differing only in
phase. We extend his calculation to allow different amplitudes
and speeds of the two sheets.

2. Single sheet swimming in a channel

We consider a viscous incompressible fluid of shear viscosity η
confined to a planar channel of width 2L. We choose Cartesian
coordinates such that the upper plane wall is at z = L and the
lower wall is at z = −L. The fluid is assumed to satisfy stick
boundary conditions at the walls. In the creeping flow limit the
fluid velocity v(r, t) and the pressure p(r, t) satisfy the Stokes
equations

η∇2v − ∇ p = 0, ∇ ·v = 0. (2.1)

The time dependence of flow velocity and pressure is caused by
the requirement that the flow velocity satisfy the stick boundary
condition at a sheet with surface S(t) with prescribed time
dependence. The swimming motion of the sheet is defined as
the periodic deformation of a planar rest shape S0 such that for
every point s on the plane the position of the corresponding
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point on the deformed surface S(t):

R(t) = s + ξ (s, t), (2.2)

is characterized by a displacement vector ξ (s, t), which is
periodic in time. The stick boundary condition implies

v(s + ξ , t) = ∂ξ

∂ t
, s ∈ S0. (2.3)

We consider the symmetric case, where S0 in the rest frame is
the xy plane at z = 0. The swimming velocity U will be found
from the velocity −U of the two walls, as calculated from the
prescribed periodic deformation ξ (t).

We construct an approximate perturbative solution to
equation (2.1) with boundary condition (2.3) by formal
expansion of the velocity field and the pressure in powers of
ξ :

v = v1 + v2 + · · · , p = p1 + p2 + · · · . (2.4)

Both (v1, p1) and (v2, p2) satisfy equation (2.1). The first-
order boundary condition is

v1(s, t) = ∂ξ

∂ t
, s ∈ S0. (2.5)

Averaging over a period one finds that the averages v̄1 and
p̄1 vanish. Hence to first order the swimming velocity U1

vanishes. To second order the swimming velocity U2 is found
from the value of the time average v̄2(r) at z = ±L. The
averages v̄2 and p̄2 satisfy equation (2.1) with the boundary
condition

v̄2(s) = −(ξ ·∇)v1

∣
∣
r=s
, s ∈ S0. (2.6)

The velocity components v1, p1 and v̄2 in the upper space
0 < z < L are related to those in the lower space −L < z < 0
by symmetry.

As an example we consider the transverse displacement

ξ (x, t) = Aez sin(kx − ωt), (2.7)

with positive wavenumber k and positive frequency ω. By
symmetry v1y = 0, so that the components v1x and v1z may
be derived from a stream function ψ1 as [10]

v1x = ∂ψ1

∂z
, v1z = −∂ψ1

∂x
. (2.8)

We satisfy the boundary condition (2.5) by putting

ψ1(x, z, t) = f (z) sin(kx − ωt). (2.9)

The pressure p1 satisfies Laplace’s equation, and from the
equation for v1x we see that it must take the form

p1(x, z, t) = (Pe−k|z| + Qek|z|) cos(kx − ωt) (2.10)

with coefficients P and Q. Substituting this into the equation
for the component v1x and solving, we find that the function
f (z) takes the form

f (z) = 1

4ηk2
[(B − P(3 + 2k|z|))e−k|z|

+ (C + Q(3 − 2k|z|))ek|z|] (2.11)

with coefficients B and C . By using this in the boundary
conditions for v1x and v1z at z = 0 and L we find for the
coefficients

B = 2ηωk Ae2κ 1 − 2κ − 4κ2 − e2κ

(1 − e2κ )2 − 4κ2e2κ
,

C = 2ηωk A
(1 + 2κ − 4κ2)e2κ − 1

(1 − e2κ)2 − 4κ2e2κ
,

P = 2ηωk Ae2κ 1 − 2κ − e2κ

(1 − e2κ)2 − 4κ2e2κ
,

Q = 2ηωk A
1 − (1 + 2κ)e2κ

(1 − e2κ)2 − 4κ2e2κ
,

(2.12)

with the abbreviation κ = kL. The velocity components
satisfy the symmetry relations

v1x(x, z, t) = −v1x(x,−z, t),

v1z(x, z, t) = v1z(x,−z, t),
(2.13)

so that the boundary conditions at z = −L are also satisfied.
The mean surface velocity, defined as the right-hand side of
equation (2.6), is found to have x component

ūxS(s) = −(ξ · ∇)v1x

∣
∣
r=s

= U2, (2.14)

with U2 given by

U2 = 1
2ωk A2 F(κ) (2.15)

with function

F(κ) = sinh2 κ + κ2

sinh2 κ − κ2
. (2.16)

The z component of the mean surface velocity vanishes. Hence
equation (2.1) is solved by

v̄2(r) = U2ex , p̄2(r) = 0. (2.17)

The swimming velocity of the sheet is, to second order, U2 =
−U2ex . The sheet swims in the direction opposite to the
phase velocity of the surface perturbation. The expression in
equation (2.15) was derived also by Reynolds [3] and Katz [5].

The above result implies that in the laboratory frame,
where the walls are at rest, the sheet swims with velocity
|U2| in the negative x direction. In the laboratory frame the
fluid velocity and the pressure perturbation, when averaged
over a period of time, vanish at any point, to second order in
the amplitude A. Thus the stick boundary conditions have a
pervading influence.

We calculate also the dissipation as a function of the
parameters. The rate of dissipation per unit area is

D = η

∫ L

−L

[

2

(
∂vx

∂x

)2

+ 2

(
∂vz

∂z

)2

+
(
∂vx

∂z
+ ∂vz

∂x

)2]

dz.

(2.18)
To second order in the amplitude this may be calculated from
the first-order flow. Averaging over a period one obtains

D̄2 = ηA2ω2kG(κ), G(κ) = sinh 2κ + 2κ

sinh2 κ − κ2
. (2.19)
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Alternatively we may follow Taylor [1], and calculate the work
done by the fluid pressure against the sheet. The rate of work
done per unit area by the fluid in the upper half of the channel
is, when averaged over a period,

W = p1
dξz

dt

∣
∣
∣
∣
z=0+

. (2.20)

The viscous stress does not contribute since ∂v1z/∂z vanishes
at the sheet on account of the condition of incompressibility
and the vanishing of v1x . We get the same contribution from
the lower half of the channel, so that the rate of dissipation is

D̄2 = 2W. (2.21)

The relation is confirmed by explicit calculation. The function
G(κ) tends to 2 as κ → ∞, so that in this limit equation (2.19)
agrees with the expression for the work calculated by Taylor in
the limit L → ∞.

We define the dimensionless efficiency as

E2 = 4ηω
U2

D̄2
. (2.22)

The prefactor is chosen such that E2 equals unity for L → ∞.
From equations (2.15) and (2.19) we find

E2 = 2
sinh2 κ + κ2

sinh 2κ + 2κ
. (2.23)

In figure 1 we plot the efficiency as a function of κ . The
efficiency is maximal at κm = 2.065, corresponding to
wavelength λm = 3.042L. At the maximum the efficiency is
E2m = 1.097. Both functions F(κ) and G(κ) diverge at small
κ , but the efficiency behaves as E2 = κ + O(κ3).

3. Peristaltic pumping

The same first-order solution can be used to discuss the
problem of peristaltic pumping. In this situation the sheet is
flexible and can support a running wave, but is kept fixed at
the ends, so that there can be no net motion. In each order
the flow velocity and pressure again satisfy the creeping flow
equations (2.1), but the boundary conditions are different. The
solution of the second-order flow problem must be modified
accordingly. The second-order flow velocity, averaged over
a period of time, must vanish at the walls at z = ±L, but
at the mean position of the sheet z = 0 there can be a net
velocity corresponding to the running wave. As a consequence
there is a net force per unit area acting on the sheet, which is
compensated by constraints at the ends at x = ±∞.

Explicitly the second-order averaged flow velocity and
pressure are

v̄2(r) = U2

(

1 − |z|
L

)

ex, p̄2(r) = 0. (3.1)

The net current through the upper half of the channel is

J2 =
∫ L

0
v̄2(r) dz = 1

2 U2Lex , (3.2)
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Figure 1. Efficiency E2 of a single sheet swimming midway in a
channel of width 2L , as given by equation (2.23), as a function of
κ = kL .

and the same current runs through the lower half. The current
must be compared with the work done, i.e. the dissipation.
The efficiency of the pump is again measured by E2 given by
equation (2.23).

It is natural to consider also a pump with two wavy walls
consisting of two sheets at z = 0 and L. In this case we
consider only the space 0 < z < L. We assume again
that the lower sheet is distorted by the running wave given by
equation (2.7). The upper sheet is distorted similarly with a
running wave

ξ̂ (x, t) = Âez sin(kx − ωt − ϕ), (3.3)

with phase shift ϕ. The first-order flow is derived from the
stream function

ψ1(x, z, t) = f (z) sin(kx − ωt)+ f̂ (z) sin(kx − ωt − ϕ).

(3.4)
We write the function f̂ (z) in the form

f̂ (z) = 1

4ηk2
[(B̂ − P̂(3 + 2k(L − z)))e−k(L−z)

+ (Ĉ + Q̂(3 − 2k(L − z)))ek(L−z)], (3.5)

similar to equation (2.11). Then the coefficients B̂, Ĉ, P̂, Q̂
take the same form as in equation (2.12) with A replaced by Â.
The mean surface velocity at the lower sheet takes the form of
equation (2.14) with U2 replaced by U ′

2 with

U ′
2 = 1

2ωk A[AF(κ)+ ÂH (κ) cosϕ], (3.6)

with H (κ) given by

H (κ) = 2κ sinh κ

sinh2 κ − κ2
. (3.7)

The mean surface velocity at the upper sheet takes the same
form with U2 replaced by Û ′

2, where

Û ′
2 = 1

2ωk Â[ ÂF(κ)+ AH (κ) cosϕ]. (3.8)

The second-order average flow velocity is

v̄2(r) =
[

U ′
2

(

1 − z

L

)

+ Û ′
2

z

L

]

ex , (3.9)

3
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corresponding to the net current

J2 =
∫ L

0
v2(r) dz = 1

2 (U
′
2 + Û ′

2)Lex . (3.10)

The second-order average dissipation is

D̄2p = 1
2ηω

2k[A2G(κ)−4AÂK (κ) cosϕ+ Â2G(κ)], (3.11)

with interference factor

K (κ) = κ cosh κ + sinh κ

sinh2 κ − κ2
. (3.12)

We define the efficiency of the pump as

E2p = 2ηω
U ′

2 + Û ′
2

D̄2p
, (3.13)

and consider in particular the case of equal amplitudes A = Â.
Then U ′

2 = Û ′
2, so that the second-order flow on time average

is uniform across the channel. The efficiency becomes

E2p = 2
F(κ)+ H (κ) cosϕ

G(κ)− 2K (κ) cosϕ
. (3.14)

This tends to unity at large κ and shows a maximum with
value E2pm > 1 provided 0 < |ϕ| < 1.6345. For example,
for ϕ = π/4 the maximum is at κm = 1.227 and takes the
value E2pm = 4.727. For smaller values of ϕ the value of κm

decreases and E2pm increases. As ϕ → 0 the value κM tends
to 0 and E2pm tends to ∞. In figure 2 we show E2p at ϕ = π/4
as a function of κ . Both the speed and the dissipation diverge
at small κ , but the efficiency behaves as

E2p = κ cot2 ϕ

2
+ O(κ3) as κ → 0. (3.15)

The slope diverges as ϕ → 0.

4. Two swimming sheets

The calculation of section 3 of a peristaltic pump consisting
of a channel bounded by two flexible sheets may be used
to discuss the situation of two sheets swimming parallel in
infinite space. The situation was studied by Taylor [1] in
connection with the hydrodynamic interaction of spermatozoa.
He considered the case of two sheets swimming at the same
speed, with strokes differing only by a phase angle. We
consider the more general case where amplitudes and speeds
may also differ. Physically one may think of two swimmers
who tune their Doppler-shifted frequencies such that their wave
patterns are in resonance and show constructive interference.
In the small-amplitude limit the Doppler shifts vanish, so that
one may consider a single frequency.

We consider a lower sheet swimming in infinite fluid with
distortion in its rest frame given by equation (2.7) and an upper
sheet separated by distance L swimming with distortion in
its rest frame given by equation (3.3). To first order in the
amplitudes the flow is a linear superposition of the two flows
of the individual swimmers. As a consequence the lower sheet

0

1

2

3

4

5

E
2p

=
E

2s

0 1 2 3
K

4 5 6

Figure 2. Efficiency E2p of a peristaltic pump of width L , as given
by equation (3.14), as a function of κ = kL for phase difference
ϕ = π/4. The same plot gives the efficiency E2s of two sheets
swimming at a distance L in infinite space with strokes of equal
wavenumber and amplitude with phase difference ϕ = π/4.

swims with velocity U21 = −U ′
2ex in the frame where the fluid

is at rest at infinity and the upper sheet swims with velocity
U22 = −Û ′

2ex , where U ′
2 and Û ′

2 are given by equations (3.6)
and (3.8). The mean second-order flow velocity v̄2(r) vanishes
identically.

It is not necessary to calculate the dissipation in the upper
space z > L and in the lower space z < 0 explicitly, since
we can use Taylor’s argument which gives equation (2.21) for
a single swimmer. Thus the total mean dissipation for the two
swimming sheets to second order in the two amplitudes is

D̄2s = 2D̄2p, (4.1)

and can be found from equation (3.11). With the definitions

α = 1

2
G(κ)− K (κ) = 2 sinh2(κ/2)

sinh κ + κ
,

β = 1

2
G(κ)+ K (κ) = 2 cosh2(κ/2)

sinh κ − κ
,

(4.2)

this can be cast in the form

D̄2s = ηω2k[(A2 + Â2)(α + β)+ 2AÂ(α− β) cos ϕ]. (4.3)

For equal amplitudes A = Â and with ϕ = 2φ this reduces to

D̄2s = 4ηω2k A2[α cos2 φ + β sin2 φ], (4.4)

which is the form derived by Taylor. He did not calculate the
velocity of the two swimmers. For A = Â we define the
efficiency of the swimming pair as

E2s = 8ηω
U ′

2

D̄2s
. (4.5)

This takes the value E2s = E2p, with E2p given by
equation (3.14). For given phase difference ϕ < π/2 the
efficiency can be optimized by varying the wavenumber k, as
discussed in section 2.

The above calculation relies on the fact that, to first order
in the amplitude, one cannot distinguish between the laboratory

4
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frame and the rest frame of either sheet. Hence the boundary
condition for the second-order flow and the dissipation can be
calculated from the first-order flow in the common laboratory
frame in which the fluid is at rest at infinity. The time-averaged
second-order surface velocity in the rest frame of either sheet,
which determines the boundary condition, is constant and
directed along the sheet. The corresponding problem for the
mean second-order flow velocity in the laboratory frame, with
the condition that neither sheet exert a net force on the fluid,
has a trivial solution.

5. Discussion

We have shown that the problems of swimming and peristaltic
pumping at low Reynolds number in planar geometry may
be solved from a unified point of view. The solution of the
creeping flow equations to first order in the wave amplitudes is
identical for the two problems. The difference arises to second
order in the amplitudes. We have considered a transverse wave
and symmetric geometry, but clearly the principle holds more
generally. Different types of waves and different geometries
may be considered.

For both problems it would be of interest to include the
effects of inertia. This would imply a generalization of Tuck’s
solution [4] for the swimming of a single sheet.

There is an extensive literature on the swimming of bodies
of finite size at low Reynolds number [11, 6, 12–15]. It is
usually assumed that the swimmer moves in infinite fluid. The
example treated here shows that confinement by walls can have
an important effect on the swimming velocity, and can improve
the efficiency.
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